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A LEAST SQUARES METHOD FOR THE REDUCTION OF 

FPiEE-OSCILLATION DATA 

By P h i l l i p  R. Wilcox and W i l l i a m  L. Crawford 

A m e s  Research Center 

SUMMARY 

The c l a s s i c a l  l eas t  squares curve f i t t i n g  method i s  used t o  determine t h e  
frequency, amplitude, damping r a t i o ,  phase angle, and zero o f f s e t  of both a 
one- and two-degree-of-freedom system from free o s c i l l a t i o n  data.  

The method i s  appl ied t o  a number of experimental t r a n s i e n t s  with good 
r e s u l t s .  Where possible ,  comparisons are made wi th  the  r e s u l t s  of o ther  
methods. The least-squares  method i s  found t o  be particu1arl.y use fu l  i n  the  
ana lys i s  of two-degree-of-freedom systems where o ther  techniques a re  d i f f i c u l t  
or impossible t o  apply. 

INTRODUCTION 

I n  wind-tunnel t e s t i n g  when the  dynamic s t a b i l i t y  of a configurat ion i s  
one of the  parameters t o  be determined, e i t h e r  f r e e - o s c i l l a t i o n  o r  forced- 
o s c i l l a t i o n  techniques can be used. The f r e e - o s c i l l a t i o n  technique i s  e a s i e r  
t o  implement and was used recent ly  a t  Ames Research Center i n  t e s t i n g  ai- 
symmetric hammerhead models ( r e f .  l ) .  A t y p i c a l  model w a s  mounted i n  the  
wind tunnel  on a f r e e - o s c i l l a t i o n  balance and a disturbance i n  the  model a t t i -  
tude w a s  introduced by r o t a t i n g  the  model and then quickly r e l eas ing  it. A 
continuous s igna l  proport ional  t o  the  model a t t i t u d e  w a s  obtained and l a t e r  
passed through an analog t o  d i g i t a l  converter  t o  provide d i sc re t e  measurements 
a t  equal time i n t e r v a l s .  When t h i s  record corresponds t o  a one-degree-of- 
freedom system, there are seve ra l  methods commonly used t o  obta in  the  damping 
r a t i o  and na tu ra l  frequency. 
response method) i s  t o  use  the  amplitude response curve ( ref .  2)  as  indicated 
i n  f igu re  1. This curve i s  obtained from t h e  Fourier  transform of the  f ree-  
o s c i l l a t i o n  t r a n s i e n t .  Another method ( ca l l ed  here  peak amplitude method) i s  
t o  p l o t  the  values of t he  peak amplitude on a semilog p l o t  and then ca l cu la t e  
the  damping r a t i o  as ind ica ted  i n  f i g u r e  2. 

One of these methods ( ca l l ed  here amplitude 

During t h e  reduct ion of the da ta  from these  tes ts  it w a s  found the  
methods mentioned above f a i l e d  t o  y i e l d  cons is ten t  data f o r  a number of t r an -  
s i e n t s .  These t r a n s i e n t s  a l l  showed evidence of multiple-mode o s c i l l a t i o n s .  
I n  an e f f o r t  t o  f i n d  a data ana lys i s  technique t h a t  could be applied t o  t r an -  
s i e n t s  of t h i s  type, a least-squares  method w a s  developed. It i s  the  purpose 
of t h i s  paper t o  descr ibe t h i s  method which w i l l  analyze e i t h e r  a one- or two 
degree-of-freedom system rap id ly  and accurately,  and t o  describe how the  



r e s u l t s  obtained by t h i s  method compare with the  r e s u l t s  obtained by the  
amplitude response and peak amplitude methods. 

NOTATION 

A 

B 

C 

f 

n 

P 

51 

52 

amplitude of t he  envelope of curve 1 a t  y ( t )  

amplitude of t he  envelope of curve 2 a t  t = 0, same u n i t s  as  y ( t )  

zero o f f s e t ,  same u n i t s  a s  

phase angle of curve 1, radians 

phase angle of curve 2, radians 

number of da ta  po in t s  

n a t u r a l  frequency of curve 1, radians/sec 

n a t u r a l  frequency of curve 2, radians/sec 

time, see 

amplitude of t r a n s i e n t  

measured values of t r a n s i e n t  

c a l eu  1 a t  e d value s o f t r a n s  i e n t 

-51p, U s e e  

-52% Vsec 

t = 0, same u n i t s  a s  

y ( t )  

damping r a t i o  of curve 1 

damping r a t i o  of curve 2 

DESCRIPTION O F  THE LEAST-SQUARES ME=CHOD 

The response o f  t he  one- and two-degree-of -freedom t r a n s i e n t  i s  assumed 
t o  be of t he  form 

y ( t )  = Aeat s i n ( p t  + f )  + C (1) 

and 

y ( t )  = Aeat s i n ( p t  + f )  + BePt s i n ( q t  + g )  f C (2) 
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The problem i s  t o  determine the  constants i n  these equations so tha t  the  
equation b e s t  describes,  i n  a least-squares  sense, a s e t  of experimental data.  

Appendix A i s  a de ta i led  descr ipt ion of the der ivat ion of the equations 
needed t o  solve f o r  the  unknowns i n  equation (1) o r  (2) by the  LSM (Least 
Squares Method). The analysis  r e s u l t s  i n  a matrix equation t h a t  can be solved 
by normal matrix techniques. To apply t h i s  method t o  a two-degree-of -freedom 
system, f i r s t  assign a vector (Ao,ao,po,fo,Co,Bo,~o,qo,go) of i n i t i a l  e s t i -  
mates f o r  a l l  the  unknowns. Using these values, ca lcu la te  both y (denoted by 
yc) and the p a r t i a l  der ivat ives  of y with respect  t o  each of t h e  unknowns 
(dy/dA,dy/da, . . . , ay/ag) a t  t i m e s  corresponding t o  each of t he  n data  
points.  After doing the  indicated summations the following matrix equation 
for correct ions t o  the  i n i t i a l  estimates i s  obtained. 

I(%).@ i 

. . .  

After solving these nine equations f o r  the  correct ions (@A,&, . . . ,&), 
they a re  added t o  the o r i g i n a l  estimates of the constants and the process i s  
repeated. This i t e r a t i o n  process i s  continued u n t i l  the  correct ions are  a rb i -  
t r a r i l y  small (assuming convergence) a t  which time the estimate vector contains 
values of the  constants which b e s t  describe the experimental da ta .  

This procedure does not guarantee convergence. It has been found, how- 
ever, t h a t  if  reasonable i n i t i a l  estimates can be made of t he  constants ( i n  
pa r t i cu la r  the  p and q ) ,  then convergence i s  assured and i s  very rapid.  

PRESENTATION O F  RESULTS 

One Degree of Freedom 

The t r ans i en t s  of the  three  models selected a re  p lo t ted  i n  f igu re  3. 
They were chosen because they a re  representat ive of the  range of damping 
r a t i o s  encountered during t h e  a c t u a l  t e s t i n g  program described i n  reference 1. 
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The peak amplitude and amplitude response p l o t s  of  each t r ans i en t  a r '  
shown i n  f igu res  4 and 5, respect ively.  
mode 3 ( r e f .  3) was used t o  ca lcu la te  the  amplitude response of the  transier. 
( i .e. ,  Fourier transforms).  
Fortran I V  programs by the  s t a f f  of t h e  Computation and Analysis Branch a t  
Ames. The damping r a t i o s  of t he  peak amplitude p l o t s  w e r e  calculated as i nd i -  
cated i n  f igu re  2 while the frequencies were determined from f igu re  3 by 
counting the  number of cycles  i n  a given time increment. The damping r a t i o s  
and frequencies of t he  amplitude response p l o t s  were ca lcu la ted  a s  indicated 
i n  f igu re  1. These r e s u l t s ,  the  r e s u l t s  obtained from t h e  LSM, and the nor- 
malized standard deviation, o r  SD, (see sec t ion  on E r r o r )  are  recorded i n  
t a b l e  I .  From t h i s  t a b l e  it can be seen t h a t  t he  SD's, ca lcu la ted  with the  
parameters from the  LSM, f o r  the  three  t r ans i en t s  a re  very small. Since 
these values a re  l e s s  than the  accuracy of t he  data,  the values obtained from 
the  LSM f o r  the  frequencies and damping r a t i o s  a re  assumed t o  be correct .  
Now, with the  parameters of the LSM as  the  bas i s ,  t he  e r r o r s  of the  other 
methods a re  as  follows: 

The Share Library Program, A A H A N j ,  

This program was converted t o  MAP f o r  use with 

Transient A- Transient B Transient C Method _ _  

E 1; E L E 4 

-0.06% +185.60$ +O. l7% +37.95% +0.20% +34.35% Amplitude response 

From t h i s ,  it can be seen t h a t  a l l  th ree  methods compare wel l  on frequency 
but  the amplitude response method gives damping r a t i o s  t h a t  do not agree with 
those obtained from the  o ther  t w o  methods. 

The solut ions obtained from the LSM have been p lo t t ed  against  the experi-  
mental data i n  f igu re  6. 
good agreement between the  generated curves and the  t r a n s i e n t  data .  

It can be seen from t h i s  p l o t  t h a t  there  i s  very 

Two Degree of Freedom 

The three  t r ans i en t s  chosen f o r  the  two-degree-of-freedom system have 
been p lo t ted  i n  f igu re  7. They were chosen t o  give a va r i e ty  of two-degree- 
of-freedom cases i n  which the  app l i cab i l i t y  of peak amplritude and amplitude 
response methods becomes doubtful. The peak amplitude p l o t s  a r e  as  shown 
i n  f igu re  8, and the  f a c t  t h a t  no s t r a i g h t  l i n e  can adequately represent  the  
peak values i s  apparent. The amplitude response p l o t s  a re  shown i n  f igu re  9, 
and although the  frequencies are  wel l  defined, t he  bandwidth measurement f o r  
t he  second mode of t r ans i en t  E was uncertain.  These r e s u l t s ,  along with those 
obtained from the  LSM, and the  normalized standard deviation, o r  SD, are  
recorded i n  t ab le  11. Here again the  parameters as  calculated by the LSM are  
assumed t o  be cor rec t  f o r  t he  reason s t a t ed  previously. With these parameters 
as  a bas i s ,  the  e r ro r s  f o r  the  amplitude response parameters a re  as  follows: 
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Transient D Transient E Transient F 

P eo. 02% +0.18% t-o.33% 

q +O 53% ~ 3 . 6 8 %  x) .lo% 

(2 -25 e 30% --- +22.10% 

From t h i s ,  it can be seen t h a t  although both methods agree well  on frequency, 
they disagree on the  damping ratios.  

The r e s u l t s  of t he  LSM f o r  t r ans i en t  D a re  shown i n  f igure  10 where the  
individual  t rans ien ts ,  curves 1 and 2, and t h e i r  sum have been plot ted.  The 
sum i s  p lo t t ed  against  t he  experimental data. The r e s u l t s  obtained f o r  t r a n -  
s i e n t s  E and F are  p lo t t ed  i n  f i g u r e s  11 and 12, respect ively.  It can be 
seen t h a t  there  i s  again good agreement between the  experimental data  and the  
t h e o r e t i c a l  curve for each of  t he  t rans ien ts .  

E r r o r  

The present LSM has been programmed t o  assume t h a t  it has successful ly  
arr ived a t  the values of t he  parameters when the  incremental change i n  a l l  
parameters i s  l e s s  than 0.05 percent o f  the  previous value o f  t h a t  parameter. 

A s  an a id  i n  judging how well t he  theo re t i ca l  curve f i t s  the experi-  
mental data, the normalized standard deviat ion i s  computed. 

SD x 100 

This parameter has been recorded i n  t ab le  I f o r  t he  one-degree-of-freedom 
t r ans i en t s  and i n  t a b l e  I1 f o r  the  two-degree-of-freedom t r ans i en t s .  The 
poorest  f i t  was f o r  t r ans i en t  D, where S D  = 1.98. 
s a t i s f ac to ry  f i t s  were obtained. 

Thus, i n  a l l  cases, very 

Since the  second frequency f o r  t r ans i en t  E was not pronounced (see  
f i g .  9 ) ,  t h i s  t r ans i en t  was analyzed a l so  as  a one-degree-of -freedom system. 
The b e s t  f i t  obtainable under t h i s  assumption was S D  = 2.11, s ign i f i can t ly  
poorer than the  two-degree-of -freedom case where SD = 1.29. 
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CONCLUSIONS 

A l e a s t  squares method has been developed f o r  the  analysis  of f r e e -  
o s c i l l a t i o n  data and a comparison of t h i s  technique with the  peak amplitude 
and amplitude response methods has led  t o  the  following conclusions: 

1. For t he  one-degree-of-freedom t r ans i en t  data,  a l l  th ree  methods give 
good answers f o r  the  frequency but  t he  amplitude response method gives poor 
values f o r  the  damping r a t i o .  

2. For t he  two-degree-of-freedom t r a n s i e n t  data, t he  l e a s t  squares 
method gave a good f i t  f o r  cases where the  o ther  methods were not p r a c t i c a l  
t o  apply. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  Cal i f .  94035, Jan. 8 ,  1968 
124-11-04-09-00 -21 
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APPENDIX A 

MATHEMATICAL DERIVATION OF NUMERICAL SOLUTION 

It i s  assumed t h a t  the  f r ee -osc i l l a t ion  t r ans i en t s  considered i n  t h i s  
paper can be modeled as  the  sum o f  one or more damped s ine  waves; t h a t  i s  

( A l )  at 
y ( t )  = Ae s i n ( p t  + f )  f Bept(qt f g) f . . . + C 

where t i s  the  time var iab le ;  C i s  a zero o f f s e t  correct ion;  A, B, . . . 
are  amplitude f ac to r s ;  a,  p,  . . . a re  functions of the  damping r a t i o s ;  
p, q, . . . are  frequencies;  and f ,  g, . . . are  phase angles. 

The problem i s  t o  determine these parameters from the t r ans i en t  data  
such t h a t  equation ( A l )  b e s t  describes the  t r ans i en t  data  i n  the l e a s t  squares 
sense. 

The usua l  method of using the  l e a s t  squares c r i t e r i o n  ( r e f .  4) d i r e c t l y  
f o r  f i t t i n g  equation ( A l )  t o  the t r ans i en t ,  y ( t ) ,  would r e s u l t  i n  a s e t  of 
nonlinear equations f o r  which there  i s  no known ana ly t ic  solution. However, 
an i t e r a t i v e  method of determining successive correct ions t o  estimates of the 
parameters can be applied. This method (refs. 4 and 5) which r e s u l t s  i n  
l i nea r  equations i s  derived i n  the  following paragraphs. 

The der ivat ion w i l l  be made f o r  the  so lu t ion  of the  equation 

y ( t )  = Aeat s i n ( p t  + f )  + BePt s i n ( q t  + g) + C (A2) 

Extending the r e s u l t s  t o  any number o f  damped s ine waves i s  straightforward. 

Equation (A2) can be wr i t ten  i n  the symbolic form 

To apply the  l e a s t  squares method, we need t o  express the  re la t ionship  
between the  empirical  data  and equation ( A 3 )  a s  a s e t  of  r e s idua l  equations. 
Given n data  poin ts  yi, i = 1, 2, . . . , n, if  vi represents  t he  d i f f e r -  
ence or r e s idua l  between the  da ta  y i ,  taken a t  time ti, and the  value c a l -  
culated from equation (A2) a t  time ti, we obtain the  following r e s idua l  
equations : 
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. . .  
v = Y(ti,A,CL, Y g >  - Yi i 

. . .  

If we now assume t h a t  we can obtain approximate values Ao,c6,po,fo,CoY 
Boy~o,qo,go for the  t r u e  parameters A,a ,  . . . , g, then we can express the  
t r u e  parameters as  7 I A = A o + M  B = B o + &  

a = a  +La P = Po + n p  

P = Po + 'a? 9 = go + &I 

f = f o + a f  g = g o + A g  

c = co 4- nc 

0 

where AI,&, . . , Ag are  correct ions t o  be determined. Subs t i tu t ing  
equation (A5)  i n  ( A 4 )  we obtain the  r e s idua l  equations 

v1 = y(tl,A, + M,a, 4 &, , go + &) - Y 1  I . . .  
= y(ti,Ao + DA,ao + Ca, go + &) - Yi vi 

. . .  
v = y(tn,Ao + M,ao + h, . go + Ag) - Yn n 

For s impl ic i ty  l e t  us consider only the  i t h  r e s idua l  equation, which 
can be wr i t ten  as  

8 



v i + yi = y(tiJAo + Myao + h, . . . , go + Ag) ( A 7 )  

By considering the  r i g h t  s ide  of equation ( A 7 )  as  a function of A,a ,  . . g 
with t constant,  we can expand it by Taylor’s theorem f o r  a function of  sev- 
e r a l  var iables  (refs. 5 and 6) around the  point  (Aorm, . . . , go).  This 
expansion i s  va l id  s ince equation (A2) has continuous p a r t i a l  der ivat ives  of 
a l l  orders with respect  t o  A,a ,  . . . , and g. 

Taylor’s expansion y i e lds  

v i + Yi = Y(tiJAo’ao’ * - 7 go) 

where * means t h a t  a f t e r  d i f f e ren t i a t ion  the  numerical values of the  p a r t i a l s  
are  calculated f o r  t = t i 7  A = A 0 7  a = a0) P = P O ,  f = f o r  C = C o y  B = Bo, 
P = P O 7  4 = qOY g = go* 

Expanding equation ( A 8 )  gives 

vi + Yi = ~ ( t ~ , A ~ , a ~ ,  . . . Y go) 

j =2 

Since 
q t  + g ) ;  and at, P t ,  A, and B a re  bounded; it i s  c l ea r  t h a t  t he  R j  cons is t  
O f  Sums of  terms Rjk of the  order  

s i n ( p t  + f, q t  + g)  s 1, cos(p t  + f ,  q t  + g)  s 1 f o r  a l l  ( p t  + f ,  

R = order max(l,A,B)max(a2# &L, . M Ag, 
jk 

&, &L np, . . . , Ap2, . . . 7 m2, . 7 4 (A101 

Since a l l  the  Aa, @a, . . . , @g are considerably l e s s  than 1, and a l l  t h e  
p a r t i a l s  a re  bounded, a l l  t he  R j  approach zero as  j ge t s  large.  This 
r e s u l t ,  together with the  f a c t  t h a t  a l l  the  p a r t i a l s  e x i s t  and are  continuous 
i n  the  range 
and ( A g )  t o  be val id .  

0 S t s 1 i s  a su f f i c i en t  condition ( r e f .  7 )  f o r  equations ( A 8 )  

9 
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If we now approximate Y(ti,Ao + AA,m + &, . . . , go + Ag) by dropping 
the  second and higher order terms of equation ( A 9 ) ,  

v c yi = y(ti,Ao,aoy . . . i 

+ L h  (g)* + + (@* 
o r  

= @)* + Lh (2)* + ‘ -!? ng ($)* i 

I f  we l e t  y i  = Y ( t i j A O , m j  . . . , go) - yi ,  equation ( A 1 2 )  becomes 

Equation ( A 1 3 )  now represents  a s e t  of n r e s idua l  equations which are  l i nea r  
i n  the  correct ions AA, Ax, . . . , Ag and can thus be solved f o r  the  correc-  
t i ons  by a l e a s t  squares technique. 

vi2 w i l l  be a m i n i m  ( r e f .  7 ) .  f The l e a s t  squares c r i t e r i o n  i s  t h a t  

i= 1 
This c r i t e r i o n  w i l l  be s a t i s f i e d  when the  f i r s t  p a r t i a l s  with respect  t o  a l l  
the  unknowns, evaluated a t  the  point  (AO,aO,  . . . , go) ,  a r e  equal t o  zero. 
Thus f o r  the p a r t i a l  with respect  t o  AA: 

Subs t i tu t ing  equation ( A 1 3 )  for v i  becomes 

l2 
n .=I &[m(%)*+Ax(g)*+ +&(g)*+YiJ 

10 



o r  
n 

0 =c [(@* (%)* AA + (%)* (2)* &, + 

Dis t r ibu t ing  t h e  summation and taking t h e  constants  @A, La,, . . . , Ag 
outside t h e  summations gives 

Proceeding s imi l a r ly  f o r  each of t he  o ther  cor rec t ions  Ax, Ap, . . . , @g 
r e s u l t s  i n  nine l i n e a r  equations i n  the nine unknown correct ions.  Numerical 
values f o r  t he  cor rec t ions  can now be obtained by matrix techniques ( r e f .  8 ) .  
If we arrange i n t o  an a r r ay  t h e  coe f f i c i en t s  of t he  unknowns i n  the  s e t  of 
nine equations derived i n  the  same manner as equation (A14) we obta in  the  
square matrix U of order  9: 

u =  

I n  I(%)* @)* 
i= 1 i= 1 

. 

&)*(2)* ' 
i=1 

i= 1 
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W e  now define a column vector  V 
e qu a t ions 

as the  l e f t  hand members of t he  nine 

v =  

o r  

V =  

i= 1 

- &)* 
i= 1 

. . .  

i=1 

. . .  

We now w i s h  t o  determine the  vec tor  X such t h a t  UX = V. Jordon's 
method (ref .  9) i s  used t o  reduce U t o  I, t h e  i d e n t i t y  matrix, through 
a series of elementary transformations,  which when appl ied t o  
i n  X. The vec tor  X now represents  t h e  cor rec t ions :  

V r e s u l t  

x =  

@A 

LkL 

. . 
4 

12 



Since this resul t  was obtained by a t runcat ion of the  Taylor s e r i e s  
expansion i n  equation (All), X contains only approximate values f o r  the  
correct ions.  We, therefore ,  form a new set of approximate values AI, a l ,  . . . , gl by adding the  computed correct ions t o  the  i n i t i a l  estimates 

( ~ 1 8 )  

For nota t iona l  convenience we now l e t  A 1  be ca l l ed  Ao, a1 be ca l l ed  
ao,  . . . , and g , b e  ca l l ed  go, and r e tu rn  t o  equation ( A = ) .  We now 
proceed as  before t o  obtain an improved approximation t o  the  t r u e  parameters 
A, a, . . . , g. This process of i t e r a t i o n  i s  repeated u n t i l  there  i s  no 
change ( t o  the  degree of accuracy obtainable from the input data) i n  the  
parameters A, a,  . . . , g i n  equation ( A 1 8 )  i n  t w o  subsequent i t e r a t i o n s .  

By using the  computer program based on t h i s  analysis ,  we have shown t h a t  
t h i s  i t e r a t i v e  process does converge rap id ly  under a spec i f i c  range of condi- 
t ions.  The primary condition i s  t h a t  the  i n i t i a l  estimate of the  frequencies 
be close t o  the t rue  values. The choice of f irst  and l a s t  data poin ts  pre-  
sented t o  the  program i s  not c r i t i c a l  because of the parameters included f o r  
phase angles. However, including data  containing extraneous forces  or vibra-  
t ions ,  or data  with nonstationary parameters within the  time period used w i l l  
de f in i t e ly  l i m i t  or negate convergence t o  meaningful values. 
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TABLE I. - COMPARISON OF RFSLJLTS FOR ONE-DEGFEX-OF-FRFEDOM TRANSIENTS 

0.0761 

- .0069 

.0428 

lransient 

-0 0044 

.0138 

0257 

Method 

A 

B 

C 

Peak amplitude 
Amplitude r e  spons e 
Least squares 

Peak amplitude 
Amplitude response 
Least squares 

Peak amplitude 
Amplitude response 
Least squares 

I 

Frequency 

Hz 
( P h )  

16.6 
16.65 
16.66 

17 3 
1-7 -70 
17 -67 
19.8 

20.26 
20.30 

lamping r a t i o  
(!,=-ah) 

0.0018 
.oo@ 
.00168 

.0088 

.0129 
00935 

.0165 

.0217 

.01615 

1.9801 

.8634 

-1.715 

Phase angle Zero o f f se t  
(c) (f) 

radians 

~ 

Normalized 
standard deviation 

(SD) 
( %) 

0.20 

*78 

1.42 



Frequency Damping r a t i o  angle Amplitude Phase 
I I I 

Zero 
Iffset 
(a 

Normalized 
standard 
deviatior 

(sa 
Transient 

Least 
squares 21.66 24.45 .or169 

Method Curve 1 Curve 2 
Curve 1 

(P/2fl) , ( 5 1= 
Hz Hz 

Curve 1 
(A) 

h r v e  2 
(B) 

0.0157 

.02097 

--- 

--- 

.01546 

Curve 1 

radians 
(f) 

F Peak 
amplitude - - - --- --- --- 

Peak 1 
amplitude --- 

Amplitude 

Amplitude 
response 45.20 102.20 .0149 .0069 

, 

Le as t 
squares 45.05 102.10 -01114 , 000565 

0.0147 1.0161 1.98 

response 

Least 
squares 

E Peak 
amplitude 

1.3805 -0.8603 

25.50 I 32.45 ‘0.0088 
I 
I 

25.46 32.28 .00743 

- - - --- --- 

-1.9502 - .&288 .OOl7 

.6614 -1.7834 -4784 

Curve 2 

radians 
( g )  

0.3161 

2.499 



v) 

Po 

2 %  
u - w  

3 
0 - a  

A p  = bandwidth 

po = center f requency 

I 

1 
i 
1 

--I t- 
Frequency 

Figure 1.- An amplitude response curve. 
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6 = Logarthmic decrement 

A n  = number of cycles 

Z = physical length of I cycle 

X = physical length 

Cycles  ( l i n e a r )  

Figure 2.- P l o t  of peak amplitudes. 



+ Experiment 
- Hand faired data 

Transient B 

Time __t 

Figure 3.- Transients used i n  the  one-degree-of-freedom analysis.  



- Hand faired data 
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Figure 4.- Peak amplitude of transients used in single-degree-of-freedom 
analysis. 
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Figure 5.- Amplitude response of transients used in single-degree-of- 
freedom analysis. 
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+ Experiment 

Transient B 

Transient C 

Time - 
Figure 6.- Results of t he  t r ans i en t s  as ca lcu la ted  from t h e  LSM. 
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+ Experiment 
- Hand faired 

data 
Transient D 
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Transient F 

Figure 7.- Transients used i n  the  two-degree-of-freedom analysis. 
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Figure 8.- Peak amplitude of transients used in the two-degree-of-freedom 
analysis. 
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Figure 9.- Amplitude response of t r ans i en t s  used i n  two-degree-of-freedom 
analysis  . 



+ Experiment 
Theory - 

(a) Curve I 

(b) Sum (curve I and curve 2) 

(c) Curve 2 Time - 
Figure 10.- Results of transient D as calculated from the LSM. 
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(a) Curve I 

+ Experiment 
- Theory 

+ 
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(b) Sum (curve I and 2 1 
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Time - 
Figure 11.- Results of t r ans i en t  E as ca lcu la ted  f r o m  the  LSM. 
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Figure 12.- Results of transient F as calculated from the LSM. 
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